Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A computational investigation is presented, in conjunction with synthesis and experimental characterization, into the structural, electronic, and optical properties of layered two‐dimensional organic lead bromide perovskites. Materials based on the chiral (R/S)‐4‐fluoro‐α‐methylbenzylammonium (R/S‐FMBA), which have been shown to lead to bright room‐temperature circularly polarized luminescence, are contrasted with the similar achiral 4‐fluorobenzylammonium (FBA). Using density functional theory (DFT) with van der Waals (vdW) corrections, relaxed structures (compared with X‐ray diffraction, XRD) and optical absorption spectra (compared with experiments) are studied, as well as band structure and orbital character of transitions. A Python code is developed and provided to calculate octahedral distortions and compare DFT and XRD results, finding that vdW corrections are important for accuracy and that DFT overestimates octahedral tilt angles. (FMBA)2PbBr4shows among the largest tilt angle differences (often termed ) reported, 14°–15°, indicating strong inversion symmetry‐breaking, which enables its chiral emission. A large resulting Dresselhaus spin‐splitting effect is found. The lowest‐energy optical transitions involve the perovskite only and are polarized within the layer. This work furthers understanding of structure‐property relations with applications to optoelectronics and spintronics.more » « less
- 
            Light emitting diodes (LEDs) have wide applications from fullcolor displays to solid‐state lighting. Numerous types of luminescent materials have been explored for LEDs, ranging from inorganic semiconductors to metal complexes and quantum dots. Despite the rapid pace of development, LEDs have not achieved their full potentials in terms of performance and cost efficiency. Identifying new eco‐friendly materials for LEDs is of great interest. Recently, metal halide perovskites and perovskite‐related hybrid materials have emerged as new generation luminescent materials with unique optoelectronic properties. Here, some of our recent development of LEDs based on metal halide perovskites and perovskite‐related materials will be discussed.more » « less
- 
            Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C 8 H 28 N 5 Pb 3 Cl 11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission.more » « less
- 
            Abstract Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) are emerging materials with significant potential for optoelectronic applications, including direct X‐ray detectors. While 0D OMHH single crystals exhibit excellent X‐ray detection properties, their scalability remains a significant challenge due to the time‐intensive growth process and difficulty in producing large single crystals exceeding a few centimeters. This limitation hinders their practicality for large‐area detector applications. Here, we report for the first time the development of amorphous 0D OMHH films via solution processing for efficient direct X‐ray detection. By reacting a non‐crystalline organic halide, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl)phosphonium bromide (TPPCarzBr), with zinc bromide (ZnBr2), we have successfully produced amorphous 0D (TPPCarz)2ZnBr4films with controlled thickness via facile solution processing. The organic cations (TPPCarz⁺) feature a lower bandgap than the ZnBr42−anions, enabling efficient molecular sensitization, where ZnBr42−anions serve as X‐ray absorbers and TPPCarz⁺ cations as charge transporters. Direct X‐ray detectors based on 0D (TPPCarz)2ZnBr4films demonstrate outstanding performance, achieving a stable X‐ray detection sensitivity of 2,165 µC Gyair⁻1cm⁻2at 20 V mm⁻¹ and a detection limit of 6.01 nGyair s⁻¹. The amorphous nature of these films enhances their processability, allowing for fabrication in various sizes and shapes, and making them highly adaptable for scalable detector applications.more » « less
- 
            Free, publicly-accessible full text available December 13, 2025
- 
            Abstract 0D organic metal halide hybrids (OMHHs) have recently emerged as a new generation of scintillation materials, due to their high luminescence quantum efficiency, sensitivity, stability, and cost‐effectiveness. While numerous 0D OMHH scintillators have been developed to date, most of them are based on solution grown single crystals that require time‐consuming synthesis and are limited in size. Here, high‐performance X‐ray scintillators based on facile solution processed 0D OMHH amorphous films are reported for the first time. By reacting triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium bromide (TPPcarzBr) with manganese bromide (MnBr2), 0D (TPPcarz)₂MnBr₄ amorphous films can be prepared via solution processing with mild thermal annealing, which exhibits green photoluminescence with an emission maximum ≈517 nm and a photoluminescence quantum efficiency of ≈87%. The X‐ray scintillation of 0D (TPPcarz)₂MnBr₄ amorphous films is characterized to exhibit a light yield of 44600 photon MeV−1and an outstanding linearity with a low limit of detection of 32.42 nGyairs−1over a wide range of X‐ray dose rates. The versatile processability of 0D (TPPcarz)₂MnBr₄ is illustrated with remarkable recyclability, high cost‐effectiveness, and scalability for large‐scale production. By taking advantage of the amorphous nature of newly designed OMHHs, the approach opens up new opportunities for developing high‐performance, solution‐processable scintillators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
